3 research outputs found

    InSAR as a tool for monitoring hydropower projects: A review

    Get PDF
    This paper provides a review of using Interferometric Synthetic Aperture Radar (InSAR), a microwave remote sensing technique, for deformation monitoring of hydroelectric power projects, a critical infrastructure that requires consistent and reliable monitoring. Almost all major dams around the world were built for the generation of hydropower. InSAR can enhance dam safety by providing timely settlement measurements at high spatial-resolution. This paper provides a holistic view of different InSAR deformation monitoring techniques such as Differential Synthetic Aperture Radar Interferometry (DInSAR), Ground-Based Synthetic Aperture Radar (GBInSAR), Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), Multi-Temporal Interferometric Synthetic Aperture Radar (MTInSAR), Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPSInSAR) and Small BAseline Subset (SBAS). PSInSAR, GBInSAR, MTInSAR, and DInSAR techniques were quite commonly used for deformation studies. These studies demonstrate the advantage of InSAR-based techniques over other conventional methods, which are laborious, costly, and sometimes unachievable. InSAR technology is also favoured for its capability to provide monitoring data at all times of day or night, in all-weather conditions, and particularly for wide areas with mm-scale precision. However, the method also has some disadvantages, such as the maximum deformation rate that can be monitored, and the location for monitoring cannot be dictated. Through this review, we aim to popularize InSAR technology to monitor the deformation of dams, which can also be used as an early warning method to prevent any unprecedented catastrophe. This study also discusses some case studies from southern India to demonstrate the capabilities of InSAR to indirectly monitor dam health

    Furthering the precision of RUSLE soil erosion with PSInSAR data: an innovative model

    No full text
    Soil erosion is a severe environmental problem worldwide, especially in tropical regions. The Revised Universal Soil Loss Equation (RUSLE), one of the universally accepted empirical soil erosion models, is quite commonly used in tropical climatic conditions to estimate the magnitude and severity of soil erosion. This study, apart from identifying the role of individual parameters in influencing the results of the RUSLE, also aims at refining the RUSLE results by incorporating the state-of-the-art technique Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) in a GIS environment by utilizing its ability to measure minute surface changes in millimetre levels. Apart from this novel approach of prioritising soil erosion classes using PSInSAR, the eroding surface conditions were also studied using low coherence value (\u3c0.75 in this study). The spatially and temporally averaged annual soil loss and net soil erosion (2015–2019), derived through RUSLE and transport limited sediment delivery (TLSD) approach, respectively, was improved by spatially integrating the PSInSAR velocity map. The integrated methodological framework is demonstrated for a tropical river basin in South India (Muvattupuzha River Basin [MRB]), which shows a mean rate of net soil loss of 6.8 ton/ha/yr, and nearly 8% of the area experiences deposition. Our approach to improve the accuracy of RUSLE-based soil erosion classes using PSInSAR techniques clearly demarcated the areas that call for utmost priority in implementing management practices. The corollary results show that the very severe soil erosion class is characterized by PSI velocity with higher negative values, followed by the successively lower classes. Results strongly suggest that RUSLE output can be improved as well as validated using a velocity map derived from radar data
    corecore